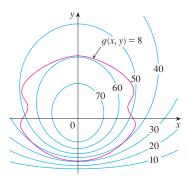
940 CHAPTER 14 PARTIAL DERIVATIVES

14.8 EXERCISES

I. Pictured are a contour map of f and a curve with equation g(x, y) = 8. Estimate the maximum and minimum values of f subject to the constraint that g(x, y) = 8. Explain your reasoning.



- A (a) Use a graphing calculator or computer to graph the circle x² + y² = 1. On the same screen, graph several curves of the form x² + y = c until you find two that just touch the circle. What is the significance of the values of c for these two curves?
 - (b) Use Lagrange multipliers to find the extreme values of $f(x, y) = x^2 + y$ subject to the constraint $x^2 + y^2 = 1$. Compare your answers with those in part (a).

3–17 Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint(s).

3.
$$f(x, y) = x^2 + y^2; xy = 1$$

- **4.** $f(x, y) = 4x + 6y; x^2 + y^2 = 13$
- 5. $f(x, y) = x^2 y; \quad x^2 + 2y^2 = 6$
- **6.** $f(x, y) = e^{xy}; \quad x^3 + y^3 = 16$
- **7.** $f(x, y, z) = 2x + 6y + 10z; \quad x^2 + y^2 + z^2 = 35$
- **8.** $f(x, y, z) = 8x 4z; x^2 + 10y^2 + z^2 = 5$
- 9. $f(x, y, z) = xyz; \quad x^2 + 2y^2 + 3z^2 = 6$
- **10.** $f(x, y, z) = x^2 y^2 z^2$; $x^2 + y^2 + z^2 = 1$
- **II.** $f(x, y, z) = x^2 + y^2 + z^2$; $x^4 + y^4 + z^4 = 1$
- **12.** $f(x, y, z) = x^4 + y^4 + z^4; \quad x^2 + y^2 + z^2 = 1$
- **13.** $f(x, y, z, t) = x + y + z + t; \quad x^2 + y^2 + z^2 + t^2 = 1$
- **14.** $f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n;$ $x_1^2 + x_2^2 + \dots + x_n^2 = 1$

- **15.** $f(x, y, z) = x + 2y; \quad x + y + z = 1, \quad y^2 + z^2 = 4$
- **16.** f(x, y, z) = 3x y 3z; $x + y - z = 0, \quad x^2 + 2z^2 = 1$
- **17.** $f(x, y, z) = yz + xy; xy = 1, y^2 + z^2 = 1$

18–19 Find the extreme values of f on the region described by the inequality.

- **18.** $f(x, y) = 2x^2 + 3y^2 4x 5$, $x^2 + y^2 \le 16$
- **19.** $f(x, y) = e^{-xy}, \quad x^2 + 4y^2 \le 1$

Æ

- 20. Consider the problem of maximizing the function f(x, y) = 2x + 3y subject to the constraint √x + √y = 5. (a) Try using Lagrange multipliers to solve the problem. (b) Does f(25, 0) give a larger value than the one in part (a)?
 - (c) Solve the problem by graphing the constraint equation and several level curves of *f*.
 - (d) Explain why the method of Lagrange multipliers fails to solve the problem.
 - (e) What is the significance of f(9, 4)?
- **21.** Consider the problem of minimizing the function f(x, y) = x on the curve $y^2 + x^4 x^3 = 0$ (a piriform).
 - (a) Try using Lagrange multipliers to solve the problem.
 - (b) Show that the minimum value is f(0, 0) = 0 but the Lagrange condition ∇f(0, 0) = λ∇g(0, 0) is not satisfied for any value of λ.
 - (c) Explain why Lagrange multipliers fail to find the minimum value in this case.
- (4) If your computer algebra system plots implicitly defined curves, use it to estimate the minimum and maximum values of $f(x, y) = x^3 + y^3 + 3xy$ subject to the constraint $(x - 3)^2 + (y - 3)^2 = 9$ by graphical methods.
 - (b) Solve the problem in part (a) with the aid of Lagrange multipliers. Use your CAS to solve the equations numerically. Compare your answers with those in part (a).
 - 23. The total production P of a certain product depends on the amount L of labor used and the amount K of capital investment. In Sections 14.1 and 14.3 we discussed how the Cobb-Douglas model P = bL^αK^{1-α} follows from certain economic assumptions, where b and α are positive constants and α < 1. If the cost of a unit of labor is m and the cost of a unit of capital is n, and the company can spend only p dollars as its total budget, then maximizing the production P is subject to the constraint mL + nK = p. Show that the maximum production occurs when

$$L = \frac{\alpha p}{m}$$
 and $K = \frac{(1 - \alpha)p}{n}$

- 24. Referring to Exercise 23, we now suppose that the production is fixed at bL^αK^{1-α} = Q, where Q is a constant. What values of L and K minimize the cost function C(L, K) = mL + nK?
- **25.** Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter p is a square.
- **26.** Use Lagrange multipliers to prove that the triangle with maximum area that has a given perimeter *p* is equilateral. *Hint:* Use Heron's formula for the area:

$$A = \sqrt{s(s-x)(s-y)(s-z)}$$

where s = p/2 and x, y, z are the lengths of the sides.

27–39 Use Lagrange multipliers to give an alternate solution to the indicated exercise in Section 14.7.

27. Exercise 39	28. Exercise 40
29. Exercise 41	30. Exercise 42
31. Exercise 43	32. Exercise 44
33. Exercise 45	34. Exercise 46
35. Exercise 47	36. Exercise 48
37. Exercise 49	38. Exercise 50
39. Exercise 53	

- **40.** Find the maximum and minimum volumes of a rectangular box whose surface area is 1500 cm² and whose total edge length is 200 cm.
- **41.** The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.
- **42.** The plane 4x 3y + 8z = 5 intersects the cone $z^2 = x^2 + y^2$ in an ellipse.
 - (a) Graph the cone, the plane, and the ellipse.(b) Use Lagrange multipliers to find the highest and lowest

A P PLIED PROJECT

points on the ellipse.

Æ

ROCKET SCIENCE

Many rockets, such as the Pegasus XL currently used to launch satellites and the Saturn V that first put men on the moon, are designed to use three stages in their ascent into space. A large first stage initially propels the rocket until its fuel is consumed, at which point the stage is jettisoned to reduce the mass of the rocket. The smaller second and third stages function similarly in order to place the rocket's payload into orbit about the earth. (With this design, at least two stages are required in order to reach the necessary velocities, and using three stages has proven to be a good compromise between cost and performance.) Our goal here is to determine the individual masses of the three stages, which are to be designed in such a way as to minimize the total mass of the rocket while enabling it to reach a desired velocity.

(LS) 43-44 Find the maximum and minimum values of f subject to the given constraints. Use a computer algebra system to solve the system of equations that arises in using Lagrange multipliers. (If your CAS finds only one solution, you may need to use additional commands.)

43.
$$f(x, y, z) = ye^{x-z};$$
 $9x^2 + 4y^2 + 36z^2 = 36, xy + yz = 1$
44. $f(x, y, z) = x + y + z;$ $x^2 - y^2 = z, x^2 + z^2 = 4$

45. (a) Find the maximum value of

$$f(x_1, x_2, \dots, x_n) = \sqrt[n]{x_1 x_2 \cdots x_n}$$

given that $x_1, x_2, ..., x_n$ are positive numbers and $x_1 + x_2 + \cdots + x_n = c$, where *c* is a constant.

(b) Deduce from part (a) that if x_1, x_2, \ldots, x_n are positive numbers, then

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{x_1+x_2+\cdots+x_n}{n}$$

This inequality says that the geometric mean of n numbers is no larger than the arithmetic mean of the numbers. Under what circumstances are these two means equal?

46. (a) Maximize $\sum_{i=1}^{n} x_i y_i$ subject to the constraints $\sum_{i=1}^{n} x_i^2 = 1$ and $\sum_{i=1}^{n} y_i^2 = 1$.

(b) Put

$$x_i = \frac{a_i}{\sqrt{\sum a_i^2}}$$
 and $y_i = \frac{b_i}{\sqrt{\sum b_j^2}}$

to show that

$$\sum a_i b_i \leq \sqrt{\sum a_j^2} \sqrt{\sum b_j^2}$$

for any numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$. This inequality is known as the Cauchy-Schwarz Inequality.

942 CHAPTER 14 PARTIAL DERIVATIVES

Courtesy of Orbital Sciences Corporatio

For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting from the acceleration of the rocket vehicle has been modeled by

$$\Delta V = -c \ln \left(1 - \frac{(1-S)M_r}{P+M_r} \right)$$

where M_r is the mass of the rocket engine including initial fuel, P is the mass of the payload, S is a *structural factor* determined by the design of the rocket (specifically, it is the ratio of the mass of the rocket vehicle without fuel to the total mass of the rocket with payload), and c is the (constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass A. Assume that outside forces are negligible and that c and S remain constant for each stage. If M_i is the mass of the *i*th stage, we can initially consider the rocket engine to have mass M_1 and its payload to have mass $M_2 + M_3 + A$; the second and third stages can be handled similarly.

I. Show that the velocity attained after all three stages have been jettisoned is given by

$$v_{f} = c \left[\ln \left(\frac{M_{1} + M_{2} + M_{3} + A}{SM_{1} + M_{2} + M_{3} + A} \right) + \ln \left(\frac{M_{2} + M_{3} + A}{SM_{2} + M_{3} + A} \right) + \ln \left(\frac{M_{3} + A}{SM_{3} + A} \right) \right]$$

2. We wish to minimize the total mass $M = M_1 + M_2 + M_3$ of the rocket engine subject to the constraint that the desired velocity v_f from Problem 1 is attained. The method of Lagrange multipliers is appropriate here, but difficult to implement using the current expressions. To simplify, we define variables N_i so that the constraint equation may be expressed as $v_f = c(\ln N_1 + \ln N_2 + \ln N_3)$. Since *M* is now difficult to express in terms of the N_i 's, we wish to use a simpler function that will be minimized at the same place as *M*. Show that

$$\frac{M_1 + M_2 + M_3 + A}{M_2 + M_3 + A} = \frac{(1 - S)N_1}{1 - SN_1}$$
$$\frac{M_2 + M_3 + A}{M_3 + A} = \frac{(1 - S)N_2}{1 - SN_2}$$
$$\frac{M_3 + A}{A} = \frac{(1 - S)N_3}{1 - SN_3}$$

and conclude that

$$\frac{M+A}{A} = \frac{(1-S)^3 N_1 N_2 N_3}{(1-SN_1)(1-SN_2)(1-SN_3)}$$

- **3.** Verify that $\ln((M + A)/A)$ is minimized at the same location as M; use Lagrange multipliers and the results of Problem 2 to find expressions for the values of N_i where the minimum occurs subject to the constraint $v_j = c(\ln N_1 + \ln N_2 + \ln N_3)$. [*Hint:* Use properties of logarithms to help simplify the expressions.]
- **4.** Find an expression for the minimum value of M as a function of v_f .
- 5. If we want to put a three-stage rocket into orbit 100 miles above the earth's surface, a final velocity of approximately 17,500 mi/h is required. Suppose that each stage is built with a structural factor S = 0.2 and an exhaust speed of c = 6000 mi/h.
 (a) Find the minimum total mass M of the rocket engines as a function of A.
 (b) Find the mass of each individual stage as a function of A. (They are not equally sized!)
- **6.** The same rocket would require a final velocity of approximately 24,700 mi/h in order to escape earth's gravity. Find the mass of each individual stage that would minimize the total mass of the rocket engines and allow the rocket to propel a 500-pound probe into deep space.

APPLIED PROJECT HYDRO-TURBINE OPTIMIZATION ||| 943

APPLIED PROJECT

HYDRO-TURBINE OPTIMIZATION

The Katahdin Paper Company in Millinocket, Maine, operates a hydroelectric generating station on the Penobscot River. Water is piped from a dam to the power station. The rate at which the water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and unique) power function that gives the amount of electric power generated as a function of the water flow arriving at the turbine. The incoming water can be apportioned in different volumes to each turbine, so the goal is to determine how to distribute water among the turbines to give the maximum total energy production for any rate of flow.

Using experimental evidence and *Bernoulli's equation*, the following quadratic models were determined for the power output of each turbine, along with the allowable flows of operation:

$$\begin{split} & KW_1 = (-18.89 + 0.1277Q_1 - 4.08 \cdot 10^{-5}Q_1^2)(170 - 1.6 \cdot 10^{-6}Q_T^2) \\ & KW_2 = (-24.51 + 0.1358Q_2 - 4.69 \cdot 10^{-5}Q_2^2)(170 - 1.6 \cdot 10^{-6}Q_T^2) \\ & KW_3 = (-27.02 + 0.1380Q_3 - 3.84 \cdot 10^{-5}Q_3^2)(170 - 1.6 \cdot 10^{-6}Q_T^2) \\ & 250 \leq Q_1 \leq 1110, \quad 250 \leq Q_2 \leq 1110, \quad 250 \leq Q_3 \leq 1225 \end{split}$$

where

 Q_i = flow through turbine *i* in cubic feet per second

- KW_i = power generated by turbine *i* in kilowatts
- Q_T = total flow through the station in cubic feet per second
- 1. If all three turbines are being used, we wish to determine the flow Q_i to each turbine that will give the maximum total energy production. Our limitations are that the flows must sum to the total incoming flow and the given domain restrictions must be observed. Consequently, use Lagrange multipliers to find the values for the individual flows (as functions of Q_T) that maximize the total energy production $KW_1 + KW_2 + KW_3$ subject to the constraints $Q_1 + Q_2 + Q_3 = Q_T$ and the domain restrictions on each Q_i .
- **2.** For which values of Q_T is your result valid?
- **3.** For an incoming flow of 2500 ft³/s, determine the distribution to the turbines and verify (by trying some nearby distributions) that your result is indeed a maximum.
- **4.** Until now we have assumed that all three turbines are operating; is it possible in some situations that more power could be produced by using only one turbine? Make a graph of the three power functions and use it to help decide if an incoming flow of 1000 ft³/s should be distributed to all three turbines or routed to just one. (If you determine that only one turbine should be used, which one would it be?) What if the flow is only 600 ft³/s?
- 5. Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming flow is 1500 ft³/s, which two turbines would you recommend using? Use Lagrange multipliers to determine how the flow should be distributed between the two turbines to maximize the energy produced. For this flow, is using two turbines more efficient than using all three?
- 6. If the incoming flow is 3400 ft³/s, what would you recommend to the company?

944 CHAPTER 14 PARTIAL DERIVATIVES

CONCEPT CHECK

- **I.** (a) What is a function of two variables?
 - (b) Describe three methods for visualizing a function of two variables.
- **2.** What is a function of three variables? How can you visualize such a function?
- 3. What does

$$\lim_{(x,y)\to(a,b)} f(x,y) = I$$

mean? How can you show that such a limit does not exist?

- (a) What does it mean to say that *f* is continuous at (*a*, *b*)?
 (b) If *f* is continuous on ℝ², what can you say about its graph?
- 5. (a) Write expressions for the partial derivatives $f_x(a, b)$ and $f_y(a, b)$ as limits.
 - (b) How do you interpret f_x(a, b) and f_y(a, b) geometrically? How do you interpret them as rates of change?
 - (c) If f(x, y) is given by a formula, how do you calculate f_x and f_y?
- 6. What does Clairaut's Theorem say?
- **7.** How do you find a tangent plane to each of the following types of surfaces?
 - (a) A graph of a function of two variables, z = f(x, y)
 - (b) A level surface of a function of three variables, F(x, y, z) = k
- **8.** Define the linearization of *f* at (*a*, *b*). What is the corresponding linear approximation? What is the geometric interpretation of the linear approximation?
- **9.** (a) What does it mean to say that *f* is differentiable at (*a*, *b*)?
 - (b) How do you usually verify that f is differentiable?
- **10.** If z = f(x, y), what are the differentials dx, dy, and dz?
- **II.** State the Chain Rule for the case where z = f(x, y) and x and y are functions of one variable. What if x and y are functions of two variables?

- **12.** If z is defined implicitly as a function of x and y by an equation of the form F(x, y, z) = 0, how do you find $\partial z/\partial x$ and $\partial z/\partial y$?
- 13. (a) Write an expression as a limit for the directional derivative of *f* at (x₀, y₀) in the direction of a unit vector u = ⟨a, b⟩. How do you interpret it as a rate? How do you interpret it geometrically?
 - (b) If f is differentiable, write an expression for D_uf(x₀, y₀) in terms of f_x and f_y.
- 14. (a) Define the gradient vector ∇f for a function f of two or three variables.
 - (b) Express $D_{\mathbf{u}}f$ in terms of ∇f .
 - (c) Explain the geometric significance of the gradient.
- 15. What do the following statements mean?
 - (a) f has a local maximum at (a, b).
 - (b) f has an absolute maximum at (a, b).
 - (c) f has a local minimum at (a, b).
 - (d) f has an absolute minimum at (a, b).
 - (e) f has a saddle point at (a, b).
- 16. (a) If f has a local maximum at (a, b), what can you say about its partial derivatives at (a, b)?(b) What is a critical point of f?
- 17. State the Second Derivatives Test.
- (a) What is a closed set in R²? What is a bounded set?
 (b) State the Extreme Value Theorem for functions of two variables.
 - (c) How do you find the values that the Extreme Value Theorem guarantees?
- Explain how the method of Lagrange multipliers works in finding the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k. What if there is a second constraint h(x, y, z) = c?

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why. If it is false, explain why or give an example that disproves the statement.

1.
$$f_y(a,b) = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}$$

- There exists a function f with continuous second-order partial derivatives such that f_x(x, y) = x + y² and f_y(x, y) = x y².
- **3.** $f_{xy} = \frac{\partial^2 f}{\partial x \, \partial y}$
- **4.** $D_{\mathbf{k}}f(x, y, z) = f_{z}(x, y, z)$
- If f(x, y) → L as (x, y) → (a, b) along every straight line through (a, b), then lim_{(x,y)→(a,b)} f(x, y) = L.
- **6.** If $f_x(a, b)$ and $f_y(a, b)$ both exist, then *f* is differentiable at (a, b).

CHAPTER 14 REVIEW |||| 945

- **7.** If f has a local minimum at (a, b) and f is differentiable at (a, b), then $\nabla f(a, b) = \mathbf{0}$.
- **8.** If f is a function, then

$$\lim_{(x,y)\to(2,5)} f(x,y) = f(2,5)$$

9. If $f(x, y) = \ln y$, then $\nabla f(x, y) = 1/y$.

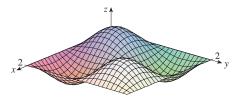
EXERCISES

I-2 Find and sketch the domain of the function.

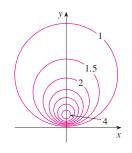
- I. $f(x, y) = \ln(x + y + 1)$
- **2.** $f(x, y) = \sqrt{4 x^2 y^2} + \sqrt{1 x^2}$
- **3–4** Sketch the graph of the function.
- **3.** $f(x, y) = 1 y^2$
- **4.** $f(x, y) = x^2 + (y 2)^2$

5-6 Sketch several level curves of the function.

- 5. $f(x, y) = \sqrt{4x^2 + y^2}$ 6. $f(x, y) = e^x + y$
- **7.** Make a rough sketch of a contour map for the function whose graph is shown.



8. A contour map of a function *f* is shown. Use it to make a rough sketch of the graph of *f*.



10. If (2, 1) is a critical point of f and

$$f_{xx}(2,1)f_{yy}(2,1) < [f_{xy}(2,1)]^2$$

then f has a saddle point at (2, 1).

II. If $f(x, y) = \sin x + \sin y$, then $-\sqrt{2} \le D_{\mathbf{u}}f(x, y) \le \sqrt{2}$.

12. If f(x, y) has two local maxima, then f must have a local minimum.

9-10 Evaluate the limit or show that it does not exist.

9.
$$\lim_{(x,y)\to(1,1)} \frac{2xy}{x^2+2y^2}$$
 10. $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+2y^2}$

- **II.** A metal plate is situated in the *xy*-plane and occupies the rectangle $0 \le x \le 10, 0 \le y \le 8$, where *x* and *y* are measured in meters. The temperature at the point (x, y) in the plate is T(x, y), where *T* is measured in degrees Celsius. Temperatures at equally spaced points were measured and recorded in the table.
 - (a) Estimate the values of the partial derivatives T_x(6, 4) and T_y(6, 4). What are the units?
 - (b) Estimate the value of $D_{\mathbf{u}}T(6, 4)$, where $\mathbf{u} = (\mathbf{i} + \mathbf{j})/\sqrt{2}$. Interpret your result.
 - (c) Estimate the value of $T_{xy}(6, 4)$.

x	0	2	4	6	8
0	30	38	45	51	55
2	52	56	60	62	61
4	78	74	72	68	66
6	98	87	80	75	71
8	96	90	86	80	75
10	92	92	91	87	78

12. Find a linear approximation to the temperature function T(x, y) in Exercise 11 near the point (6, 4). Then use it to estimate the temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

13. $f(x, y) = \sqrt{2x + y^2}$	$14. \ u = e^{-r} \sin 2\theta$
15. $g(u, v) = u \tan^{-1} v$	16. $w = \frac{x}{y - z}$

17.
$$T(p,q,r) = p \ln(q + e^r)$$

18. The speed of sound traveling through ocean water is a function of temperature, salinity, and pressure. It has been modeled by the function

$$C = 1449.2 + 4.6T - 0.055T^2 + 0.00029T^3$$

$$+ (1.34 - 0.01T)(S - 35) + 0.016D$$

where *C* is the speed of sound (in meters per second), *T* is the temperature (in degrees Celsius), *S* is the salinity (the concentration of salts in parts per thousand, which means the number of grams of dissolved solids per 1000 g of water), and *D* is the depth below the ocean surface (in meters). Compute $\partial C/\partial T$, $\partial C/\partial S$, and $\partial C/\partial D$ when $T = 10^{\circ}$ C, S = 35 parts per thousand, and D = 100 m. Explain the physical significance of these partial derivatives.

19–22 Find all second partial derivatives of f.

19.
$$f(x, y) = 4x^3 - xy^2$$
20. $z = xe^{-2y}$
21. $f(x, y, z) = x^k y^l z^m$
22. $v = r \cos(s + 2t)$

23. If
$$z = xy + xe^{y/x}$$
, show that $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z$.

24. If $z = \sin(x + \sin t)$, show that

$$\frac{\partial z}{\partial x}\frac{\partial^2 z}{\partial x \,\partial t} = \frac{\partial z}{\partial t}\frac{\partial^2 z}{\partial x^2}$$

25–29 Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

25.
$$z = 3x^2 - y^2 + 2x$$
, $(1, -2, 1)$
26. $z = e^x \cos y$, $(0, 0, 1)$
27. $x^2 + 2y^2 - 3z^2 = 3$, $(2, -1, 1)$

- **28.** xy + yz + zx = 3, (1, 1, 1)
- **29.** $\sin(xyz) = x + 2y + 3z$, (2, -1, 0)
- 30. Use a computer to graph the surface z = x² + y⁴ and its tangent plane and normal line at (1, 1, 2) on the same screen. Choose the domain and viewpoint so that you get a good view of all three objects.
 - **31.** Find the points on the hyperboloid $x^2 + 4y^2 z^2 = 4$ where the tangent plane is parallel to the plane 2x + 2y + z = 5.
 - **32.** Find du if $u = \ln(1 + se^{2t})$.
 - **33.** Find the linear approximation of the function $f(x, y, z) = x^3 \sqrt{y^2 + z^2}$ at the point (2, 3, 4) and use it to estimate the number $(1.98)^3 \sqrt{(3.01)^2 + (3.97)^2}$.
 - **34.** The two legs of a right triangle are measured as 5 m and 12 m with a possible error in measurement of at most 0.2 cm in each. Use differentials to estimate the maximum error in the calculated value of (a) the area of the triangle and (b) the length of the hypotenuse.

- **35.** If $u = x^2y^3 + z^4$, where $x = p + 3p^2$, $y = pe^p$, and $z = p \sin p$, use the Chain Rule to find du/dp.
- **36.** If $v = x^2 \sin y + ye^{xy}$, where x = s + 2t and y = st, use the Chain Rule to find $\frac{\partial v}{\partial s}$ and $\frac{\partial v}{\partial t}$ when s = 0 and t = 1.
- **37.** Suppose z = f(x, y), where x = g(s, t), y = h(s, t), g(1, 2) = 3, $g_s(1, 2) = -1$, $g_t(1, 2) = 4$, h(1, 2) = 6, $h_s(1, 2) = -5$, $h_t(1, 2) = 10$, $f_x(3, 6) = 7$, and $f_y(3, 6) = 8$. Find $\partial z/\partial s$ and $\partial z/\partial t$ when s = 1 and t = 2.
- **38.** Use a tree diagram to write out the Chain Rule for the case where w = f(t, u, v), t = t(p, q, r, s), u = u(p, q, r, s), and v = v(p, q, r, s) are all differentiable functions.
- **39.** If $z = y + f(x^2 y^2)$, where f is differentiable, show that

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = x$$

- 40. The length x of a side of a triangle is increasing at a rate of 3 in/s, the length y of another side is decreasing at a rate of 2 in/s, and the contained angle θ is increasing at a rate of 0.05 radian/s. How fast is the area of the triangle changing when x = 40 in, y = 50 in, and θ = π/6?
- **41.** If z = f(u, v), where u = xy, v = y/x, and f has continuous second partial derivatives, show that

$$x^{2}\frac{\partial^{2}z}{\partial x^{2}} - y^{2}\frac{\partial^{2}z}{\partial y^{2}} = -4uv\frac{\partial^{2}z}{\partial u\,\partial v} + 2v\frac{\partial z}{\partial v}$$

- **42.** If $yz^4 + x^2z^3 = e^{xyz}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- **43.** Find the gradient of the function $f(x, y, z) = z^2 e^{x\sqrt{y}}$.
- **44.** (a) When is the directional derivative of *f* a maximum? (b) When is it a minimum?
 - (c) When is it 0?
 - (d) When is it half of its maximum value?

45–46 Find the directional derivative of f at the given point in the indicated direction.

45. $f(x, y) = 2\sqrt{x} - y^2$, (1, 5), in the direction toward the point (4, 1)

- **46.** $f(x, y, z) = x^2 y + x\sqrt{1+z}$, (1, 2, 3), in the direction of $\mathbf{v} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$
- **47.** Find the maximum rate of change of $f(x, y) = x^2y + \sqrt{y}$ at the point (2, 1). In which direction does it occur?
- 48. Find the direction in which f(x, y, z) = ze^{xy} increases most rapidly at the point (0, 1, 2). What is the maximum rate of increase?
- 49. The contour map shows wind speed in knots during Hurricane Andrew on August 24, 1992. Use it to estimate the